Douglas

EFFECTIVE: SEPTEMBER 2010 CURRICULUM GUIDELINES

 College

G: Allocation of Contact Hours to Type of Instruction / Learning Settings

Primary Methods of Instructional Delivery and/or Learning Settings:

Lecture

Number of Contact Hours: (per week / semester for each descriptor)

6

Number of Weeks per Semester:

15

H: Course Prerequisites:
MATH 1101 with a B- or equivalent OR
MATH 1105 with a C- or equivalent

I: Course Corequisites:

None

J: Course for which this Course is a Prerequisite
MATH 1120

K: Maximum Class Size:

35

L: PLEASE INDICATE:

SEE BC TRANSFER GUIDE FOR TRANSFER DETAILS (www.bctransferguide.ca)

M: Course Objectives / Learning Outcomes

Upon completion of MATH 1110 the student should be able to:

-FUNCTIONS

-understand the concept of function and be able to determine which relations are functions by an examination of the equation and/or the graph of the relation.
-find the domain of any function and the range of functions for which the inverse can be determined or for which the graph can be easily sketched.
-extract the functional rule from a 'word problem'.
-determine if a function is odd or even and understand the graphical implication of the property.
-sketch the graphs of the following functions:

$$
y=x, y=x^{2}, y=x^{3}, y=|x|, y=\sqrt{x}, y=\frac{1}{x}, y=\frac{1}{x^{2}}, y=\sqrt{a^{2}-x^{2}}, y=[|x|]
$$

and the graphs of the following variations of the above functions:

$$
y=f(x)+c, y=f(x+c), y=-f(x), y=c f(x)
$$

-apply the above transformations to any given graph or function.
-sketch the graph of simple piece-wise defined functions.
-sketch the graph of any quadratic function and be able to determine all intercepts and the vertex using the quadratic formula and/or completing the square.
-determine the equation of a quadratic from its graphical properties.
-solve maximum-minimum 'word problems' involving a quadratic function.
-add, subtract, multiply and divide functions and be able to determine the domains of the resulting functions.
-determine the composite of several functions and its domain.
-determine the inverse of a given one-to-one function and the domain and range of the inverse function.
-prove that a given function is the inverse of another given function.
-sketch the graph of the inverse of a given one-to-one function when the inverse functional rule cannot be determined.
-understand the polar coordinate system and be able to graph a function written in polar coordinates. (optional)
-sketch the graph of a plane curve given by a set of parametric equations. (optional)
-find parametric equations of basic plane curves. (optional)
-POLYNOMIAL AND RATIONAL FUNCTIONS
-find the quotient and remainder when a polynomial is divided by a second polynomial.
-use the remainder theorem.
-use the factor theorem to find the real roots of polynomial equations and the real zeros of polynomial functions.
-determine the multiplicity of zeros.
-use the rational root test to determine all possible rational roots.
-factor and graph any polynomial of degree \mathbf{n} provided that the polynomial has at least $\mathbf{n - 2}$ rational roots.
-obtain the functional rule for a polynomial when given certain information about the roots and a value that satisfies the function and graph the function.
-sketch the graph of proper and improper rational functions that have a most one horizontal asymptote or an oblique asymptote.
-solve 'word problems' that involve polynomial or rational functions.
-EXPONENTIAL AND LOGARITHMIC FUNCTIONS
-find the exact value of logarithmic and exponential expressions.
-use a calculator to approximate the logarithm of a number to any base.
-use a calculator to approximate the solutions to exponential and logarithmic equations for all bases.
-find the inverse of a given exponential or logarithmic function and the domain and range of the inverse function.
-demonstrate an understanding of the rules of logarithms by rewriting given expressions.
-sketch the graph of exponential and logarithmic functions determining the value of all intercepts and the equation of the asymptote.
-solve 'word problems' which require the use of logarithms and/or exponentials; i.e. growth and decay problems and compound interest problems.

-THE TRIGONOMETRIC FUNCTIONS

-convert radians to degrees, minutes and seconds and vice versa.
-solve problems that demonstrate an understanding of the relationship between the central angle, the arc length and the radius of a circle.
-solve problems that demonstrate an understanding of the relationship between the angular velocity, the linear velocity and the radius of a wheel or similar object.
-determine the area of a circular sector.
-demonstrate an understanding of the six trigonometric functions relative to a right triangle and to the unit circle.
-recall and apply the fundamental trigonometric identities, the co-function formulas and the formulas for negatives.
-sketch the graphs of the six basic trigonometric functions and recognise which functions are odd and which functions are even.
-find the exact values of the remaining trigonometric functions given the values of two trigonometric functions or the value of one trigonometric function and the quadrant.
-find the exact values of the trigonometric functions for an angle in standard position given a point on the terminal side.
-find the reference angle of any angle in degrees and/or radians.
-express any trigonometric function as a function of a given trigonometric function.
-recall the exact values of the trigonometric functions for reference angles of $30^{\circ}, 45^{\circ}$, and 60° and the axis angles.
-use a calculator to approximate the value of the trigonometric function of any real number.
-use a calculator to approximate the reference angle given the value of the trigonometric function.
-determine the amplitude, period and the phase shift of any trigonometric function and sketch its graph showing all intercepts and turning points.
-demonstrate an understanding of the terms 'angle of depression' and 'angle of elevation' and solve 'word problems' involving right triangles.

ANALYTIC TRIGONOMETRY AND APPLICATIONS

-recall or derive and demonstrate an understanding of the addition and subtraction formulas, the double angle formulas and the half-angle identities for sine, cosine and tangent.
-demonstrate an understanding of the product-to-sum and sum-to-product formulas when given the formulas.
-combine a sine function and a cosine function of the same period into a single cosine function when given the formula.
-verify trigonometric identities.
-find all the solutions of trigonometric equations and find solutions on a restricted interval.
-sketch graphs of the six inverse trigonometric functions and state the domain and range of each function.
-sketch the graph of simple inverse trigonometric functions.
-find the exact value of inverse trigonometric expressions.
-simplify given composites of trigonometric and inverse trigonometric functions.
-solve 'word problems' that require the use of the inverse trigonometric functions.
-verify inverse trigonometric identities.
-solve 'word problems' that require the use of the Law of Sines and/or Law of Cosines.

-find the vertex, focus and directrix of a parabola and sketch its graph.
-find the vertices and foci of an ellipse and sketch its graph.
-find the vertices and equations of the asymptotes of a hyperbola and sketch its graph.
-find an equation of a parabola or ellipse that satisfies given conditions.

N: Course Content:

1. General Functions
2. Polynomial and Rational Functions
3. Exponential and Logarithmic Functions
4. Trigonometric Functions
5. Analytic Trigonometry and Applications
6. Conics

O: Methods of Instruction:

Lectures, problem sessions and assignments

P: Textbooks and Materials to be Purchased by Students:
Stewart, Redlin, Watson, Precalculus: Mathematics for Calculus., Current Edition, Brookes Cole. A graphing calculator.

Q: Means of Assessment

Evaluation will be carried out in accordance with Douglas College policy. The instructor will present a written course outline with specific evaluation criteria at the beginning of the semester. Evaluation will be based on some of the following:

1. Weekly quizzes	$0-40 \%$
2. Tests	$20-70 \%$
3. Assignments	$0-15 \%$
4. Attendance	$0-5 \%$
5. Class Participation	$0-5 \%$
6. Final Examination	$30-40 \%$

R: Prior Learning Assessment and Recognition: specify whether course is open for PLAR
None

Course Designer(s): Allan Majdanac

Education Council / Curriculum Committee Representative

Dean / Director: Thor Borgford

