EFFECTIVE: SEPTEMBER 2004 CURRICULUM GUIDELINES

 College

M: Course Objectives / Learning Outcomes

The student should be able to:

- write English statements in symbolic form using propositional variables or functions, logical connectives and any necessary quantifiers;
- determine the truth value of a statement under an interpretation;
- determine the negation, converse or contrapositive of a statement;
- verify logical equivalencies;
- demonstrate an understanding of tautologies, contradictions and duals;
- prove the properties of logic;
- determine the cardinality of sets, subsets, power sets and Cartesian products;
- combine sets using the set operators;
- prove set identities by showing that each expression is a subset of the other;
- use membership tables or Venn diagrams to prove set identities;
- classify functions as injective, surjective or bijective;
- demonstrate an understanding of domains, codomains, ranges, mappings and images;
- create new functions by composition;
- find the inverse of an injective function;
- demonstrate an understanding of the floor and ceiling functions;
- compute finite sums;
- determine if a set is countable or uncountable;
- give a big-O estimate for a function;
- write a simple algorithm in pseudocode;
- determine the time complexity of simple algorithms;
- demonstrate an understanding of divisibility, the greatest common divisor and modular arithmetic;
- use the Euclidean algorithm to find the gcd of two numbers;
- convert between binary, octal and hexadecimal;
- find the sum, difference, product, join, and Boolean product of two matrices;
- demonstrate an understanding of the rules of inference;
- analyze an argument as to its validity using the concepts of mathematical logic;
- use a direct proof, indirect proof, or contradiction to prove a mathematical theorem;
- prove mathematical theorems using formal inductive techniques;
- give a recursive definition of a function or a set;
- use the sum and product rules and tree diagrams to solve basic counting problems;
- apply the inclusion-exclusion principle to solve counting problems for two tasks;
- solve counting problems using the Pigeon-Hole Principle;
- count unordered selections of distinct objects;
- count ordered arrangements of objects of a finite set;
- find the expansion of a binomial;
- determine the probability of a combination of events for an equi-probable sample space;
- determine whether a relation is reflexive, irreflexive, symmetric, antisymmetric, asymmetric, and/or transitive;
- combine relations and form the composite of two or more relations;
- find the inverse and complement of a relation;
- determine the projection and join of two n-ary relations;
- represent a relation as a matrix and a digraph;
- find the reflexive, symmetric and transitive closures of a relation;
- identify the various types of graphs;
- draw graph models;
- demonstrate an understanding of the vocabulary of graph theory;
- determine whether a graph is bi-partite;
- represent a graph as an adjacency matrix and an incidence matrix;
- determine whether a pair of graphs are isomorphic;
- find circuits and paths in a graph;
- distinguish between a tree and a graph;
- describe the components and properties of various types of trees;

-	prove	or disprove Boolean identities;
-	manipulate Boolean expressions;	
-	find the dual of a Boolean expression;	
-	find the sum-of-products expansion of a Boolean function;	
-	determine whether a string belongs to the language generated by a given grammar;	
-	classify a grammar;	
- find the language created by a grammar;		
-	draw the state diagram for a finite-state machine;	
-	construct a finite-state machine to perform a function;	
-	determine the output of a finite state machine;	

O: Methods of Instruction
Lectures, problem sessions, and assignments

P: Textbooks and Materials to be Purchased by Students
Rosen, H.R., Discrete Mathematics and Its Applications, McGraw Hill, 1995.

Q: Means of Assessment
Evaluation will be carried out in accordance with Douglas College policy. The instructor will present a written course outline with specific evaluation criteria at the beginning of the semester. Evaluation will be based on some of the following:

1. Weekly tests
$0-40 \%$
2. Midterm tests
20-70\%
3. Assignments
$0-15 \%$
4. Attendance
0 - 5\%
5. Class participation
$0-5 \%$
6. Final examination
30 \%

R: Prior Learning Assessment and Recognition: specify whether course is open for PLAR
None

Course Designer(s) Natasha Davidson
Education Council / Curriculum Committee Representative
Dean / Director Des Wilson

