EFFECTIVE: MAY 2006 CURRICULUM GUIDELINES

 College| A. | Division: | Instructional | Effective Date: | May 2006 |
| :---: | :---: | :---: | :---: | :---: |
| B. | Department /
 Program Area: | Mathematics
 Faculty of Science \& Technology | Revision X | New Course |
| | | | If Revision, Section(s)
 Revised:
 Date of Previous Revision:
 Date of Current Revision: | $\begin{aligned} & \text { F, G, H, J, M, N, O, } \\ & \text { P, Q } \end{aligned}$ |
| | | | | September 2004 |
| | | | | May 24, 2005 |
| C: | MATH 1130 | D: Discrete Math | matics I | E: 3 |

M: Course Objectives / Learning Outcomes

At the end of the course, the successful student should be able to:

- write English statements in symbolic form using prepositional variables or functions, logical connectives and any necessary quantifiers;
- determine the truth value of a statement under an interpretation;
- determine the negation, converse or contrapositive of a statement;
- verify logical equivalencies;
- demonstrate an understanding of tautologies, contradictions and duals;
- prove the properties of logic;
- determine the cardinality of sets, subsets, power sets and Cartesian products;
- combine sets using the set operators;
- prove set identities by showing that each expression is a subset of the other;
- use membership tables or Venn diagrams to prove set identities;
- classify functions as injective, surjective or bijective;
- demonstrate an understanding of domains, codomains, ranges, mappings and images;
- create new functions by composition;
- find the inverse of an injective function;
- demonstrate an understanding of the floor and ceiling functions;
- compute finite sums;
- determine if a set is countable or uncountable;
- give a big-O estimate for a function;
- write a simple algorithm in pseudocode;
- determine the time complexity of simple algorithms;
- demonstrate an understanding of divisibility, the greatest common divisor and modular arithmetic;
- use the Euclidean algorithm to find the gcd of two numbers;
- convert between binary, octal and hexadecimal;
- find the sum, difference, product, join, and meet of two matrices;
- demonstrate an understanding of the rules of inference;
- analyze an argument as to its validity using the concepts of mathematical logic;
- use a direct proof, indirect proof, or contradiction to prove a mathematical theorem;
- prove mathematical theorems using formal inductive techniques;
- give a recursive definition of a function or a set;
- use the sum and product rules and tree diagrams to solve basic counting problems;
- apply the inclusion-exclusion principle to solve counting problems for two tasks;
- solve counting problems using the Pigeon-Hole Principle;
- count unordered selections of distinct objects;
- count ordered arrangements of objects of a finite set;
- find the expansion of a binomial;
- determine the probability of a combination of events for an equi-probable sample space;
- determine whether or not a relation is reflexive, symmetric, and or transitive;
- combine relations and form the composite of two or more relations;
- find the inverse and complement of a relation;
- determine the projection and join of two n-ary relations;
- represent a relation as a matrix and a digraph;
- find the reflexive, symmetric and transitive closures of a relation;
- identify the various types of graphs;
- draw graph models;
- demonstrate an understanding of the vocabulary of graph theory;
- determine whether a graph is bi-partite or not;
- represent a graph as an adjacency matrix and an incidence matrix;
- determine whether a pair of graphs are isomorphic;
- find circuits and paths in a graph;
- distinguish between a graph and a tree;
- describe the components and properties of various types of trees;
- determine whether a string belongs to the language generated by a given grammar;

Course Designer(s) \quad Natasha Davidson

