Douglas

EFFECTIVE: MAY 2003
 CURRICULUM GUIDELINES

 College

M: Course Objectives / Learning Outcomes

At the end of the course, the successful student should be able to:

- Define the terms "population" and "sample" as they apply to Statistics
- Define and differentiate between the nominal, ordinal, interval and ratio levels of measurement
- Explain the proper use of Statistics within real world application and provide examples of its abuse
- Have an understanding of experimental design and the use of random number tables and generators
- Employ statistical software such as SPSS and/or Minitab in their own statistical investigations
- Create and interpret frequency tables, histograms, cumulative frequency tables and ogives, stem and leaf displays and scatter plots
- Calculate and interpret measures of central tenancy and variation
- Calculate and interpret standard scores
- Understand the classical and relative frequency approaches to probability and employ counting techniques
- Know and apply the addition and multiplication rules for probability and the concept of conditional probability
- Be able to differentiate between discrete and continuous random variables
- Understand and apply Tchebychev's theorem
- Determine whether the conditions for a Binomial experiment apply and compute the Binomial probabilities
- Compute the mean, variance and standard deviation for the Binomial distribution
- Understand and apply the Poisson and other probability distributions
- Determine probabilities of standard and non-standard normal random variables
- Use the Normal distribution to approximate Binomial probabilities
- Understand and apply the Student t distribution
- Apply the Central Limit Theorem to estimate population parameters using large and small samples
- Apply the Central Limit Theorem to estimate the difference between population parameters
- -Perform hypothesis tests on population parameters or the difference between population parameters using large and small samples
- Understand and apply the concepts of Correlation and Regression to multi variable data and create prediction intervals
- Create Contingency Tables and perform goodness-of-fit testing in multinomial experiments

N: Course Content:

1. Introduction to Statistics

- The nature of data, uses and abuses of statistics, design of experiments statistics with calculator and computers.

2. Describing exploring and comparing data

- summarizing data with frequency tables, pictures of data, measures of central tendency, measures of variation, measures of position, exploratory data analysis.

3. Probability

- Definitions, addition rule, multiplication rule, probabilities through simulation, counting

4. Probability Distributions

- Random variables, binomial experiments, mean, variance and standard deviation for the Binomial distribution and Poisson distribution

5. Normal Probability Distributions

- The Standard Normal distribution, non-standard Normal distributions, the Central Limit Theorem, Normal approximation to the Binomial distribution

6. Estimates and Sample Sizes

- Estimating a population mean: large samples, estimating a population mean: small samples, estimating a population proportion

7. Hypothesis Testing

- Fundamentals of Hypothesis Testing, testing a claim about a mean: large samples, testing a claim about a mean: small samples, testing a claim about a proportion

8. Inferences from Two Samples

- Inferences about two means: dependent samples, inferences about two means: independent and large samples, inferences about two means: independent and small samples, inferences about two proportions

9. Correlation and Regression

- Correlation, regression variation and prediction intervals, multiple regression

10. Multinomial Experiments and Contingency Tables

- Multinomial experiments: goodness-of-fit, contingency tables: independence and homogeneity

O: Methods of Instruction
Lectures, group work, computer laboratory exercises/assignments.

P: Textbooks and Materials to be Purchased by Students
Moore, The Basic Practice of Statistics, 2nd Edition, Freeman, 2000

Q: Means of Assessment
Evaluation will be carried out in accordance with Douglas College policy. The instructor will present a written course outline with specific evaluation criteria at the beginning of the semester.
a. Weekly Quizzes
$0-20 \%$
b. Term Tests

20-70\%
c. Computer Labs
$0-30 \%$
d. Participation/Attendance
$0-5 \%$
e. Final Exam

20-40\%
Note: Students may be required to pass the final exam in order to be eligible to pass the course.
R: Prior Learning Assessment and Recognition: specify whether course is open for PLAR
None

