EFFECTIVE: SEPTEMBER 2004 CURRICULUM GUIDELINES

 College

M: Course Objectives / Learning Outcomes

Upon completion of Math 2232 the student should be able to:

- solve systems of n equations in m unknowns using Gauss-Jordan elimination and Gaussian elimination
- prove and apply the basic properties of matrix addition, scalar multiplication, matrix multiplication, the transpose of a matrix and the inverse of a matrix
- express a system of equations as a matrix equation and vice versa
- determine the inverse of a matrix by Gauss-Jordan elimination and use the inverse to find the unique solution of a system of equations
- understand the terms square matrix, symmetric matrix, zero matrix, diagonal matrix, triangular matrix and identity matrix
- evaluate the determinant of an $n \times n$ matrix
- prove and apply the basic properties of the determinant of a matrix
- understand the terms singular, non-singular and invertible as applied to a matrix
- determine the adjoint of a matrix and use the adjoint to calculate the inverse of a matrix
- solve systems of equations using Cramer’s Rule
- prove, apply and explain the basic properties of vector addition and scalar multiplication on the vector space \mathbb{R}^{n}
- give the geometrical interpretation of subspaces of \mathbb{R}^{2} and \mathbb{R}^{3}
- prove that a given set of vectors is a subspace of \mathbb{R}^{2} or \mathbb{R}^{3}
- solve problems involving linear combinations, linear dependence, linear independence, the span of a set of vectors, bases and dimension in \mathbb{R}^{n}
- determine the rank of a matrix, the basis and dimension of the column space of a matrix and the basis and dimension of the row space of a matrix
- prove and apply the basic properties of the dot product and use the dot product to solve problems and define the norm of a vector, the angle between two vectors, the distance between two vectors and orthogonality in \mathbb{R}^{n}
- determine a basis for the set of vectors orthogonal to a given vector in \mathbb{R}^{n}
- calculate the projection of one vector onto another in \mathbb{R}^{n}
- explain the terms standard basis, orthogonal basis and orthonormal basis and be able to convert a basis into an orthonormal basis using the Gram-Schmidt Process (max of three vectors) in \mathbb{R}^{n}
- prove and apply the basic properties of the cross product and use the cross product to calculate the area of a triangle and the volume of a parallelepiped
- determine the various forms of the equations of lines and planes in three-space and be able to calculate the distance from a point to a plane and the distance from a point to a line
- prove that the set of polynomials of degree less than or equal to n, P_{n}, and the set of 2×2 matrices, M_{22}, are vector spaces
- determine which subset s of P_{2} and M_{22} are subspaces
- solve problems involving linear combinations, linear dependence, linear independence, the span of a set of vectors, basis and dimension in P_{2} and M_{22}
- prove and apply the basic properties of an inner product in P_{2} and M_{22} and use the inner product to solve problems and define the norm of a vector, the angle between two vectors, the distance between two vectors and orthogonality
- prove or disprove that a given transformation is a linear transformation
- form composite transformations from given linear transformations
- determine the standard matrix for a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m}
- determine the matrices that describe a rotation, a shear, a dilation or contraction and a reflection in \mathbb{R}^{2}, and given a 2×2 matrix, describe the transformation in terms of the foregoing
- determine the kernel and range of a linear transformation and be able to express the solution as a basis of a subspace
- determine the rank and nullity of a linear transformation
- determine if a linear transformation is one-to-one
- determine the coordinate vectors of vectors in P_{2} and M_{22}
- explain isomorphism of vector spaces
- find the transition matrix from one basis to another and the image of a given vector
- find the matrix of a linear transformation relative to given bases and the image of a given vector using the matrix of the transformation

Page 3 of 3

- determine the characteristic polynomial, eigenvalues and corresponding eigenspaces of a given matrix
- prove that similar matrices have the same eigenvalues and use this property to diagonalise a square matrix
- compute the power of a square matrix using the fact that $A^{n}=P D^{n} P^{-1}$
- prove the triangular inequality using the Cauchy-Schwartz Inequality (optional)
- solve systems of first order recurrence equations and second order recurrence (difference) equations (optional)
- apply techniques of linear algebra to solve problems related to : electrical network analysis, traffic flow, Leontif Input-Output models, Markov chains, and/or computer graphics (optional)

N: Course Content:

1. Solving Systems of Equations
2. The Algebra of Matrices
3. Determinants
4. The Vector Space \mathbb{R}^{n}
5. Vector Geometry
6. General Vector Spaces
7. Inner Product Spaces
8. Linear Transformations and Linear Operators
9. Eigenvalues and Diagonalisation

O: Methods of Instruction
Lectures, problem sessions and assignments
P: Textbooks and Materials to be Purchased by Students
Lay, David C., Linear Algebra and its Applications, $2^{\text {nd }}$ Edition, Addison Wesley Longman, Inc., 2000.
Anton and Rorres, Elementary Linear Algebra, Applications Version, $8^{\text {th }}$ Edition, Wiley and Sons, 200

Q: Means of Assessment
Evaluation will be carried out in accordance with Douglas College policy. The instructor will present a written course outline with specific evaluation criteria at the beginning of the semester. Evaluation will be based on some of the following:

1. Weekly tests $0-40 \%$
2. Term tests $20-70 \%$
3. Assignments $0-20 \%$
4. Attendance $0-5 \%$
5. Class Participation $0-5 \%$
6. Final Examination $30-40 \%$

R: Prior Learning Assessment and Recognition: specify whether course is open for PLAR None

Course Designer(s)

Education Council / Curriculum Committee Representative

Dean / Director

