Douglas

EFFECTIVE: JANUARY 2003 CURRICULUM GUIDELINES

 College

M: Course Objectives / Learning Outcomes

At the completion of the course a student will be expected to:

- use vector notation and the properties of vectors
- use vectors to describe various physical quantities (position, velocity, acceleration...)
- compute dot and cross-products and verify and use properties of these products
- determine angle/orientation between two vectors or one vector and standard basis vectors
- find scalar and vector projection of one vector onto another
- use vector operations to find area and volume defined by sets of vectors
- find vector, parametric or symmetric representations for an equation of a line in R^{3}
- determine whether two lines are parallel, perpendicular or skew
- determine whether or not two lines intersect
- find vector or scalar equations for a plane
- determine and describe the orientation of two planes (angle between their normal vectors)
- determine the points (if any) of intersection between any two lines or planes
- determine the distance between a point and a line or plane
- identify and sketch the surface for a degree-two equation in three variables
- sketch regions bounded by two quadric surfaces
- find limits involving vector functions
- find the domain of a vector function and subsets of the domain where a vector function is continuous
- sketch graphs of vector functions
- differentiate and integrate vector functions
- find unit tangent, principal normal vectors and tangent lines to space curves
- verify differentiation rules for vector functions
- find the length of a space curve over an interval and its curvature at a point
- work with cylindrical or spherical coordinate systems to describe points in R^{3}
- use cylindrical or spherical coordinates to express curves or surfaces in R^{3}
- sketch level curves for functions of two variables and level surfaces for functions of three variables
- calculate limits (or prove the non-existence) for functions of two or three variables
- find subsets of a function's domain for which the function is continuous
- calculate partial derivatives of a function
- find the equation of the tangent plane to a surface at a point
- use differentials to approximate values and errors for a function of two or three variables
- establish and apply the chain rules
- find and interpret implicit partial derivatives
- find directional derivatives and gradients of functions
- find the maximum value of a directional derivative and interpret with respect to the gradient
- find and classify critical points of a function of two variables. Solve associated optimization problems
- use Method of Lagrange Multipliers to solve constrained optimization problems
- set up double and triple Riemann sums over rectangular regions and convert notation to multiple integrals. Evaluate
- identify different classes of domains of integration to set up and evaluate general multiple integrals. Change the order of integration variables
- set up Riemann sums in polar coordinates and convert to multiple integrals and evaluate
- change the representation of an integral from one set of coordinates to another and evaluate
- calculate the Jacobian of a transformation of coordinates to re-express integrals
- solve geometric and applied problems involving integration
- sketch vector fields on R^{2}
- find the gradient vector field of a multi-variable function
- set up and evaluate line integrals with respect to arclength, or any of the independent variables. Identify applications for line integrals and solve
- evaluate line integrals for vector fields
- determine whether or not a vector field is conservative
- find conditions for and use the fundamental theorem of line integrals
- verify physical principles with the fundamental theorem of line integrals (conservation of energy...)

N: Course Content:

1. Properties and applications of points, curves and surfaces for various coordinates in R^{3}.
2. Operations, properties and applications of vectors and vector functions.
3. Partial Derivatives: Limits, partial derivative rules and properties, gradients and optimization principles. Applications.
4. Multiple Integrals: Double and triple integrals over general domains in appropriate coordinate systems (rectangular, polar, cylindrical, spherical or other defined coordinates). Applications.
5. Vector Calculus: Vector fields, line integrals, Fundamental Theorem of Line Integrals. Applications.

O: Methods of Instruction
Lecture, problems sessions/assignments and computer laboratory exercises.

P: Textbooks and Materials to be Purchased by Students
Stewart, James. Multivariable Calculus, Brooks/Cole, 1999.

Q: Means of Assessment
Quizzes $\quad 0-40 \%$
Term Tests $\quad 20-70 \%$
Assignments $\quad 0-20 \%$
Attendance $0-5 \%$
Participation $\quad 0-5 \%$
Technology Lab $0-20 \%$
Final Examination $30-40 \%$

R: Prior Learning Assessment and Recognition: specify whether course is open for PLAR
None

