EFFECTIVE: SEPTEMBER 2004 CURRICULUM GUIDELINES

 College| A. | Division: | Instructional | | | Effective Date: | | September 2004 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B. | Department /
 Program Area: | Math | | | Revision | X | New Course |
| | | | | | If Revision, Section(s) Revised: | | C, H |
| | | | | | Date of Previous Revision: | | June 30, 2002 |
| | | | | | Date of Current Revision: | | September 2004 |
| C: | Math 2421 | | D: | Introduction to | Differential Equations | | E: 3 |

M: Course Objectives / Learning Outcomes
Upon completion of this course a student will be expected to:

- identify and solve first order separable, homogeneous, exact, linear, Bernoulli and Ricatti equations
- determine the existence and uniqueness of a solution of a first order initial value problem
- determine families of solution curves and their orthogonal trajectories
- set up and solve differential equations involving motion, population growth, chemical reactions/mixing, electrical circuits etc.
- determine whether or not a set of function is linearly independent. Understand and use the properties of the Wronskian
- reduce the order of a higher order DE from the information of a known solution
- identify and solve homogeneous linear constant coefficient DE's and Cauchy-Euler DE's
- use differential operator notation to express DE's
- solve non-homogeneous DE's using method of undetermined coefficients and variation of parameters
- analyze and describe all aspects of harmonic motion; damping, resonance, forced motion
- use power series to find representations for solutions of a DE near an ordinary point
- use the method of Frobenius to solve DE's near regular singular points (optional)
- use the definition of the Laplace transform to verify its properties
- determine Laplace transforms of simple functions, derivatives, integrals, step and impulse functions
- with the use of tables, determine inverse Laplace transforms
- use convolution and translation theorems to find Laplace transforms and their inverses
- solve and verify properties of DE's using Laplace transforms
- solve systems of DE's using Laplace transforms or operator techniques
- reduce a higher order linear DE to a first order linear system of DE's
- find eigenvalues and eigenvectors of a square matrix
- use matrix methods to solve first order autonomous linear systems of DE's
- find stationary point(s) of a DE
- determine the stability of a solution near a stationary point
- analyze and discuss trajectories in the phase plane
- generate analytical, graphical or numerical output from a computer algebra system (MAPLE) to assist in the analysis of a DE

N: Course Content:

1. First Order Differential Equations: separable, homogeneous, exact, linear, Bernoulli and Ricatti equations and applications.
2. Higher Order Linear Differential Equations: General theory, reduction of order, homogeneous constant coefficient and Cauchy-Euler equations, undetermined coefficients and variation of parameters methods for non-homogeneous equations.
3. Power Series: Variable coefficients, method of Frobenius, Bessel and Legendre’s equations.
4. Laplace Transforms: Properties applied to solving DE's.
5. Systems of Linear Differential Equations: Equivalence of n-th order linear DE's to an $n \mathrm{x} \mathrm{n}$ linear system of DE's. Laplace, operator and matrix methods. Phase plane analysis.
6. Non-linear Systems and Stability: solution trajectories of autonomous systems, stationary points and stability near a stationary point. Phase plane analysis

O: Methods of Instruction
Lecture, problem sessions/assignments and technology (computer) laboratory assignments.

P: Textbooks and Materials to be Purchased by Students
Zill, Dennis. A First Course in Differential Equations with Modeling Applications 7 ${ }^{\text {th }}$ ed, Brooks/Cole, 2001.

Q: Means of Assessment

Quizzes	$0-40 \%$
Term Tests	$20-70 \%$
Assignments	$0-20 \%$
Computer Labs	$0-20 \%$
Attendance	$0-5 \%$
Class Participation	$0-5 \%$
Final Examination	$30-40 \%$

R: Prior Learning Assessment and Recognition: specify whether course is open for PLAR

None

Course Designer(s)

Dean / Director

Education Council / Curriculum Committee Representative

Registrar
© Douglas College. All Rights Reserved.

